A Simplified Pipeline Calculations Program: Liquid Flow (1)

Tonye K. Jack

Abstract

Program Objective - A multi-functional single screen desktop companion program for piping calculations using Microsoft EXCEL ${ }^{\text {TM }}$ with its Visual basic for Applications (VBA) automation tool is presented. The program can be used for the following piping geometries circular, rectangular, triangular, square, elliptical and annular. Fluid properties are obtained from built-in fluid properties functions.

Index Terms- engineered spreadsheet solutions, liquid pipline flow, pipeline design, pipeline fluid properties, piping program, pipeline sizing.

1 Introduction

T\checkmark HE piping designer will often be saddled with the task of designing for different pipe configurations (circular, square ducts, etc.). Conducting such piping designs, can often involve repetitive calculations whether for simple horizontal pipelines or piping of complex terrains. Modern com-puter- assisted - tools are now often employed as aids in achieving these, if time and cost permits. Often times, for minor changes to existing installations or retrofitting, a customer (pipeline owner) would contract an engineering consultancy to conduct an analysis check that will involve desktop routine calculations such as determining pressure drops, or head loss, flow rate or pipe geometry (diameter, length, cross-sectional area, etc.) that can be assigned to an engineer for quick answers. Simple spreadsheet calculators can be developed to aid such small routine calculations. One such program is shown here with all required equations to assist in developing one.

2 Required General Equations for Incompressible FLow

Reynolds Number:

$$
\begin{equation*}
R_{e}=\frac{p V D}{\mu l} \tag{1}
\end{equation*}
$$

Flow Velocity:

$$
\begin{equation*}
V=\frac{Q}{A} \tag{2}
\end{equation*}
$$

Area: $\quad A=\frac{\pi D^{2}}{4}$

Head Loss:

$$
\begin{equation*}
h_{f}=\frac{f L V^{2}}{2 g D}=\frac{8 f L Q^{2}}{2 \pi^{2} g D^{5}} \tag{4}
\end{equation*}
$$

Friction Factor: The friction factor, f, is obtained as follows:
For Laminar Flow: The applicable equations for laminar flows ($R_{e} \leq 2100$) can be defined in terms of a laminar flow factor, L_{f}, which varies depending on the pipe geometry. The equation is of the form:

$$
\begin{equation*}
f . R_{e}=L_{f} \tag{5}
\end{equation*}
$$

For Turbulent Flow, the friction factor, f is obtained by the Colebrook-White equation

$$
\begin{equation*}
\frac{1}{f^{\frac{1}{2}}}=-2 \log \left\{\frac{(\varepsilon / D)}{3.7}+\frac{2.51}{(\sqrt{f}) R_{e}}\right\} \tag{6}
\end{equation*}
$$

Flowrate:
For Laminar Flow:

$$
\begin{equation*}
Q=\frac{\pi \rho g D^{4} h_{f}}{128 \mu L} \tag{7}
\end{equation*}
$$

For Turbulent Flow:

$$
\begin{equation*}
Q=V A \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
Q=-0.965 D^{2}\left(\frac{g D^{5} h_{f}}{L}\right)^{0.5} \operatorname{Ln}\left[\frac{\varepsilon}{3.7 D}+\left(\frac{3.17 \mu^{2} L}{g D^{3} h_{f}}\right)^{0.5}\right] \tag{9}
\end{equation*}
$$

Range of application: $\quad 10^{-6} \leq(\varepsilon / D) \leq 2 \times 10^{-2}$

$$
3 \times 10^{3} \leq R_{e} \leq 3 \times 10^{8}
$$

Solution for Diameter:

$$
\begin{gather*}
D^{5}=\left(\frac{8 f L Q^{2}}{\pi^{2} g h_{f}}\right) \tag{10}\\
D=0.66\left\{\varepsilon^{1.25}\left[\frac{\left(L Q^{2}\right)}{\left(g h_{f}\right)}\right]^{4.75}+\mu Q^{9.4}\left(\frac{L}{g h_{f}}\right)^{5.2}\right\} \tag{11}
\end{gather*}
$$

Range of application: $\quad 10^{-6} \leq(\varepsilon / D) \leq 2 \times 10^{-2}$

$$
3 \times 10^{3} \leq R_{e} \leq 3 \times 10^{8}
$$

Pressure Drop

$$
\begin{equation*}
\Delta P=\gamma h_{f}=\rho g h_{f} \Rightarrow \gamma=\rho g \tag{12}
\end{equation*}
$$

Shear Stress in Wall:

$$
\begin{equation*}
\tau=\gamma\left(\frac{f}{4}\right)\left(\frac{V^{2}}{2 g}\right) \tag{13}
\end{equation*}
$$

Power required to pump through the line:

$$
\begin{equation*}
P_{w}=Q \not h_{f}=Q \rho g h_{f} \tag{14}
\end{equation*}
$$

3 Pipe Geometry and Friction factor

3.1 CIRCULAR SECTION PIPE:

The Laminar Flow factor is defined by the relation:
$L_{f}=$ Laminar Flow factor $=f . R_{e}=64$
For Turbulent Flow, f, is obtained by the Colebrook-White formula, "(6),".

Also, for Turbulent Flow within the limits defined below, explicit values for the friction factor, f is obtained by the Swamee-Jain relationship, "(16),".

$$
\begin{equation*}
f=0.25\left[\log \left\{\frac{(\varepsilon / D)}{3.7}+\frac{5.74}{R_{e}^{0.9}}\right\}\right]^{-2} \tag{16}
\end{equation*}
$$

Range of application: $\quad 10^{-6} \leq(\varepsilon / D) \leq 2 \times 10^{-2}$

$$
3 \times 10^{3} \leq R_{e} \leq 3 \times 10^{8}
$$

The Microsoft Excel ${ }^{\text {TM }}$ Solver Add-in, has two built-in interpolation search solution methods - the Newton method and the Conjugate Gradient method. By rewriting the equation to be solved in the solution form required (see "17,") in the Microsoft Excel ${ }^{\mathrm{TM}}$ cells, the Solver Add-in option dialog box under the Tools menu, allows for desired constraints to be set as follows:

Set Target Cell:

Equal To:
Subject to: Guess value:
$\frac{1}{f^{\frac{1}{2}}}+2 \log \left\{\frac{(\varepsilon / D)}{3.7}+\frac{2.51}{(\sqrt{f}) R_{e}}\right\}=0$
The Microsoft Excel ${ }^{\mathrm{TM}}$ Goal Seek option is also useful.
Furthermore, the solution method provides for limiting the number of iterations, the degree of precision desired and the level of convergence (i.e. the decimal floating points). The error margin involved in the iteration calculation is indicated by the Tolerance percentage. Care should be exercised to avoid a risk of having a circular reference - repeated recalculation of particular cell values as input and output.

Miller [1], suggest that a single iteration will produce a result within 1% of the Colebrook-White formula, if the initial estimate is calculated from the Swamee-Jain equation.

3.2 NONCIRCULAR PIPING SECTIONS OR DUCTS

3.2.1 The Concept of Hydraulic Diameter

In determining the flow regime and velocity gradients in a pipeline, the wetted perimeter (the perimeter in contact with the fluid) is the consideration. For non-circular pipes, the Reynolds number is a function of a concept called a hydraulic Di-
ameter, defined as the ratio of the cross-sectional area of the piping section to the wetted perimeter.
The hydraulic diameter is defined such that it reduces to the diameter for the circular pipes (Cengel et. al., "[2],"). It is generally a parameter for generalising fluid flow in turbulent flow. The hydraulic diameter concept does not apply for laminar flow through non-circular pipe sections. The hydraulic diameter for different piping configurations is provided by Engineering Sciences Data Unit (ESDU), [3], [4].

3.2.2 SQuARE SECTION PIPE

Fig. 1: geometry of square pipe section- Source: [3], [4]

$$
\begin{align*}
& \mathrm{A}=\mathrm{D}^{2} \tag{17}\\
& \mathrm{D}_{\mathrm{h}}=\mathrm{D}=\text { hydraulic diameter } \tag{18}
\end{align*}
$$

For laminar flow, "(5)", is applied, as follows,
$L_{f}=$ Laminar Flow factor $=f . R_{e}=14.2$

Thus,

$$
\begin{equation*}
f=\frac{14.2}{R_{e}} \tag{19a}
\end{equation*}
$$

3.2.3 Triangular pipe section of the Isosceles type

$$
\begin{align*}
& A=1 / 2\left(d^{2} \sin \theta\right) \\
& D_{h}=\frac{d \sin \theta}{[1+\sin (\theta / 2)]} \tag{21}
\end{align*}
$$

$f . R_{e}=16\left\{0.67+0.46\left(\frac{d}{D}\right)\left(2-\frac{d}{D}\right)\right\}$

The Laminar flow factor, $\left(f . R_{e}\right)$ is defined in terms of the $(\mathrm{D} / \mathrm{d})$ ratio by "(24),"

The Variation of Laminar Flow factors for different (D/d) values is as shown in Table 2.

Again, duct side ratios falling between those in the table can be obtained by straight line interpolation.

Table 2: Laminar flow factors for Rectangular duct type pipes Source: ESDU, [3], [4]

D/d	f.R $_{\mathbf{e}}$
1	14.2
2	15.8
5	19.2
10	21.1

3.2.5 ELLIPTICAL PIPE SECTION

Fig 4: geometry of elliptical pipe section- Source: [3], [4]

$$
\begin{equation*}
A=\pi D d \tag{25}
\end{equation*}
$$

Hydraulic diameter,

$$
D_{h}=\frac{4 D d\left(64-16 c^{2}\right)}{\left[(d+D)\left(64-3 c^{4}\right)\right]}
$$

Where, for, $0.1<(\mathrm{D} / \mathrm{d})<10$

$$
\begin{equation*}
c=\frac{(D-d)}{(D+d)} \tag{27}
\end{equation*}
$$

The Laminar flow factor for elliptical pipe sections is obtained from "(28),".

$$
f \cdot R_{e}=\frac{2 D_{h}^{2}\left(D^{2}+d^{2}\right)}{\left(d^{2} D^{2}\right)}
$$

3.2.6 Right-Angled Triangular pipe section

Laminar flow factors for triangular pipe sections of the rightangled type, for variations in the angle θ_{s} defined by "(31)," is shown in Table 3.

Again, angles falling between those in the table can be obtained by straight line interpolation.

Fig 5: geometry of right-angled triangular pipe section Source: [3], [4]

$$
\begin{gather*}
A=\frac{d D}{2} \tag{29}\\
\left.D_{h}=\frac{2 d D}{d+D+\left(d^{2}+D^{2}\right)^{0.5}}\right] \tag{30}\\
\theta=\tan ^{-1}\left(\frac{d}{D}\right) \tag{31}
\end{gather*}
$$

Table 3: Laminar flow factors for Right-angled duct type pipes Source:ESDU, [3], [4]

$\boldsymbol{\theta}$	f.R $_{\mathbf{e}}$
10	12.5
30	13.0
45	13.2
60	13.0
70	12.8
90	12.0

4 Fluid Properties Functions

Microsoft Excel ${ }^{\mathrm{TM}}$ Functions category (under the Insert menu option) can be used to develop a database of mouse click, drop-down physical properties of typical pumping liquids. Yaws, [5], [6], [7], [8], provides density, viscosity, and vapour pressure data as a function of temperature in line with the mathematical relation, function(Temperature), i.e $f(\mathrm{~T})$.
For example, [8], derived general curve-fitted density relationships for certain fluid types as functions of reduced temperature. As an example, for Chlorobenzene (C 6 H 6 Cl), the following relations for liquid density apply:

$$
\begin{equation*}
\rho_{L}=A B^{-\left(1-T_{r}\right)^{2 / 7}} \tag{32}
\end{equation*}
$$

Where the constants are: $\mathrm{A}=0.3706, \mathrm{~B}=0.2708$
T_{r} is the reduced temperature $=\mathrm{T} / \mathrm{T}_{\mathrm{c}}$
$\mathrm{T}_{\mathrm{c}}=$ Critical temperature of Chlorobenzene $=359.2^{\circ} \mathrm{C}$
The constant terms vary from one fluid type
to another.
The liquid density value is in $\mathrm{g} / \mathrm{cm}^{3}$. Conversion to $\mathrm{kg} / \mathrm{m}^{3}$ can be made in the program by multiplying by 1000 .
When developing a fluid properties function data pack in Microsoft Excel ${ }^{\mathrm{TM}}$, it is recommended to follow a structured naming convention to allow for an error free process in selection using the drop-down list button. One useful method given by ALIGNAgraphics [9], is:

Name of property_ (temperature)

For water: rhoWater(temperature) viscWater(temperature)

Where rhoWater, and viscWater are the function names for water density and Liquid viscosity respectively.

5 WRITING THE Fluid Properties Functions PROGRAM

Writing the VBA Module Function code procedure, for example for Chlorobenzene liquid density using "(32)," is of the form:

Function rhoChlorobenzene (temperature)
$\mathrm{Tr}=\mathrm{T} / 359.2 \quad$ 'returns reduced temperature value'
$\mathrm{C}=(-(1-\mathrm{Tr}))^{\wedge}(2 / 7) \quad$ 'returns the exponent value'
rhoChlorobenzene $=(0.3706)^{*}(0.2708)^{\wedge} \mathrm{C}$

End Function

Compared to a VBA subroutine (SUB) procedure, a FUNCTION procedure has a return value. Thus, by entering the function procedure name into a cell, a return value can be obtained by referencing the function dependent cell. In this case the functions are dependent on temperature.

6 Method of Solution and Screen Formatting

The Excel worksheet screen shot shown in Fig. 10 shows link cells with the built in Excel developed formulae. The Interface Excel screen is formatted using the Excel VBA icons which are directly pasted on the sheet. The outputs obtainable for different piping parameter inputs are displayed using the VBA Worksheet subroutine macros shown in the program clip of the Appendix.

7 Program Application Examples

Example 1: Circular Pipes

Water at $20^{\circ} \mathrm{C}$ flows through a cast iron pipe at the rate of 1.2 $\mathrm{m}^{3} / \mathrm{s}$. The pipe is 340 m long and the head loss through the line is 80 m . What size pipe is required? Also determine the power lost to friction, the pressure drop and the shear rate in the wall?

Fig. 5: A clip of Excel Screen Solution for the Example 1

Example 2: Square Pipe Cross-section
A 350 m long square cross-section duct is used to transport air. Evaluate the pipeline given the following? Take that: Pipe Roughness $=0.008 \mathrm{~mm}$; Air density $=1.22 \mathrm{~kg} / \mathrm{m}^{3}$; Viscosty $=$ $1.81 \times 10^{-5} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$, headloss $=35 \mathrm{~m}$; flow rate $=0.5 \mathrm{~m}^{3} / \mathrm{s}$.

Fig 6: A clip of Excel Screen Solution for the Example 2

Example 3: Triangular Ducts

A 40 m long triangular conduit made of commercial steel is used to carry water at $20^{\circ} \mathrm{C}$, at the rate of $0.3 \mathrm{~m}^{3} / \mathrm{s}$. If the head loss is 4 m , and the triangular section is shaped in the form of an isosceles triangle with ${ }_{s}=35^{\circ}$, find the length of the longest side, x ?

	pine cross-section		fluid Name:		Adplication area
	Isosceles triangle \quad		Water		uniform diameter pipe \square
pipe	asphalted cast iron $\hat{\wedge}$		Operating temperature	20	degC
type:	commercisal steel		Fluid density	$1.03 \mathrm{E}+03$	$\mathrm{kg} / \mathrm{cu} . \mathrm{m}$
	Losses		Fluid viscosity (dynamic)	1.02E-03	N.s/sq.m
-	combined losses	\checkmark	Flowrate	3.00E-01	cu.m/s
0	pipeline losses only	Γ	Pipe Major Diameter or longerside	452.39	mm
0	minor losses only	Γ	Minor Diameter or shortside-length		mm
		V	angle (triangles only)	35	degrees
\# of	fitinas alona line		Pipe Length	40	m Calculate
	∇	\checkmark	Head loss (total)	4.000	
	\checkmark	-	Pipe Roughness	0.0460	mm Clear screen
	\checkmark	0	Relative roughness	$2.31 \mathrm{E}-04$	
			pressure drop	4.05E+04	Pa
	\checkmark	Γ	etficiency(specify or 100assumed)	100	percent
			Reynolds Number	1.03E+06	
			Friction Factor	0.01498	
			Velocity of flow	5.111	m/s
			Shear rate	5.05E+01	kg/sq.m
			Power regd to pump thru the line	1.21E+01	

Fig. 7: A clip of Excel Screen solution for the Example 3

Example 4: Elliptical Ducts
A galvanized pipe, elliptical cross-section of $2: 1$ aspect ratio is used to transport water at $15^{\circ} \mathrm{C}$ at the rate of $0.2 \mathrm{~m}^{3} / \mathrm{s}$ through a 150 m line. If head loss is 23 m , evaluate the pipeline?

Fig. 8: A clip of Excel Screen solution for the Example 4

Example 5: Circular pipe with fittings along line
Ethanol at $20^{\circ} \mathrm{C}$ flows from tank 1 to tank 2 at the rate of 0.024 $\mathrm{m}^{3} / \mathrm{s}$ through a 100 mm -diameter, 100 m long pipe. Compute the total head loss, if the fittings along the pipe include a 90° Long Radius Elbow, and a gate valve. ($\varepsilon / \mathrm{D}=0.00065$)

Fig. 9: A clip of Excel Screen solution for Application Example 5 - Pipes with fittings along the line

ibe cross-section Ellipse			fluid Name:		Amplication area		
			Water und		Unifiorm diameter pipe		
pipetype:	galvanised iron asphalted cast iron 		Operating temperature Fluid density Fluid viscosity (dynamic) Flowrate Pipe Maior Diameter or longerside Minor Diameter or shortside-length Aspect Ratio	15 de	degc		
			$1.04 E+03 \mathrm{~kg}$	kg/cu.m			
$\begin{aligned} & \text { type: } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Losses combined losses pipeline losses only minor losses only	$\begin{aligned} & \stackrel{\rightharpoonup}{V} \\ & \Gamma \\ & \Gamma \\ & \nabla \end{aligned}$		1.15E-03 N .	N.s/sq.m		
				2.00E-019 cu	cu.m/s		
				150.86 mm	mm		
				75.43 mm	mm		
				2			
\# of	fitings alona line			Pipe Length	150 m	m Calculate	
	\square	\checkmark	Head loss (total)	23.000 m	m clear screen		
	7	\bigcirc	Pipe Roughness	0.1500 mm	mm Clear screen		
	7	\bigcirc	Relative roughness	$7.67 \mathrm{E}-04$			
			pressure drop	${ }^{2.34 E+05} \mathrm{~Pa}$			
	\checkmark	Γ	efficiency(specify or 100 assumed)		percent		
			Friction Factor	$\frac{9.64+505}{0.01881}$		$\text { R® } 2012$	
			Velocity of flow	5.595 mis			
			Shear rate	$7.633++01 \mathrm{~kg}$	kg/sq.m		
			Power regd, to punnp thru the ine	$4.688+011 \mathrm{KN}$			

solverSolve		reciprocal of sqr. frictionfactor	reciprocal of sqr. frictionfactor
	solution		
sngRecipfric		7.170320286	7.890194064
			D=
Relative Roughness2			
sngFricfunction		1.26738E-06	-0.747686295
sngFriction sngFriction for Re>4000		0.019450147	0.016062925
		circular given(Q,D,e/D,L,u,p)	circular given(Q, D,e,L,u,p)
PipetypeRougness	0.0650	0.0650	0.0650
RelativeRoughness		0.00065	0.00065
Flowrate		0.02	0.02
Diameter major or LongSide or Dh		100.00	100.00
Diameter minor or ShortSide			
Area		0.00785	0.00785
Velocity		3.06	3.056
Length		100.00	100.00
HeadLoss-total		314.73535	259.9245283
Pipelosses only		9.256922059	7.644839068
Minorlosses		305.478427954	252.279689233
Reynolds Number		213635.3371	213635.3371
FrictionFactor		0.019450147	0.01606
Shear rate		18	15
Power reqd. to pump thru the line		59.15	48.85
efficiency		100	100
pressure drop		2464727.216	2035497.63

Fig. 10: Excel Screen showing Non-Display link Cells with built in formula for Circular pipe section

Nomenclature

$P_{1} \quad$ Upstream pressure (kPa).
$P_{2} \quad$ Downstream pressure (kPa).
$P_{w} \quad$ Power Required (kW)
$Q \quad$ Flowrate (KN/s).
$g \quad$ Gravity constant $\left(\mathrm{m} / \mathrm{s}^{2}\right)$.
$h_{f} \quad$ Head loss (m or J/kg)
A Area (m^{2}).
$f \quad$ Friction factor
$D \quad$ Pipe Major or Minor diameter (m)
$D_{h} \quad$ Hydraulic diameter (m)
$L \quad$ Pipe section length (m).
V Velocity of flow (m / s).
$\varepsilon \quad$ Pipe Rougness (mm)
$r \quad$ Specific weight $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$.
$\rho \quad$ liquid density $\left(\mathrm{kN}-\mathrm{s}^{2} / \mathrm{m}^{4}\right)$.
$\tau \quad$ Shear rate

APPENDIX

A Clip of Microsoft Excel VBA Cells - Link Worksheet Subroutines for Display Interface

Sub pipeType()
If ActiveSheet.Range("M13") $=1$ Then
ActiveSheet.Range("F13") = ""

ElseIf 2 <= ActiveSheet.Range("M13") And ActiveSheet.Range("M13") <= 10 Then

ActiveSheet.Range("F13") = ActiveSheet.Range("Q17")
End If

End Sub
'Perform pipe sizing calculations
'Circular pipeline section calculations
Sub circular()
Rho = ActiveSheet.Range("F5")
visc = ActiveSheet.Range("F6")
D = ActiveSheet.Range("F8")
d1 = ActiveSheet.Range("F9")
AspectAngle = ActiveSheet.Range("F10")
L = ActiveSheet.Range("F11")
'pipe sizing for circular section given relative roughness, headloss unknown
If ActiveSheet.Range("M17").Value $=2$ And (ActiveSheet.Range("M6").Value = 1 Or ActiveSheet.Range("M6").Value = 2 Or ActiveSheet.Range("M6").Value = 3) And ActiveSheet.Range("M9").Value $=$ True And ActiveSheet.Range("M10").Value $=$ True And ActiveSheet.Range("M15").Value = 1 Then

ActiveSheet.Range("F13") = ActiveSheet.Range("R17")
ActiveSheet.Range("F19") = ActiveSheet.Range("R23")
ActiveSheet.Range("F17") = ActiveSheet.Range("R28")
Sheets("incompressible flow").Range("R11").GoalSeek Goal:=0, ChangingCell:=Sheets("incompressible flow").Range("R7")

ActiveSheet.Range("F18") = ActiveSheet.Range("R29")
ActiveSheet.Range("F12") = ActiveSheet.Range("R25")
ActiveSheet.Range("F20") = ActiveSheet.Range("R30")
ActiveSheet.Range("F21") = ActiveSheet.Range("R31")
ActiveSheet.Range("F16") = ActiveSheet.Range("R32")
ActiveSheet.Range("F15") = ActiveSheet.Range("R33")
'same as above but given PipeRoughness not relative roughness
ElseIf ActiveSheet.Range("M17").Value $=2$ And (ActiveSheet.Range("M6").Value = 1 Or ActiveSheet.Range("M6").Value = 2 Or ActiveSheet.Range("M6").Value = 3) And ActiveSheet.Range("M9").Value $=$ True And ActiveSheet.Range("M10").Value $=$ True And ActiveSheet.Range("M15").Value $=2$ Then

ActiveSheet.Range("F14") = ActiveSheet.Range("S18")
ActiveSheet.Range("F19") = ActiveSheet.Range("S23")
ActiveSheet.Range("F17") = ActiveSheet.Range("S28")
Sheets("incompressible flow").Range("S11").GoalSeek Goal:=0, ChangingCell:=Sheets("incompressible flow").Range("S7")

ActiveSheet.Range("F18") = ActiveSheet.Range("S29")
ActiveSheet.Range("F12") = ActiveSheet.Range("S25")
ActiveSheet.Range("F20") = ActiveSheet.Range("S30")
ActiveSheet.Range("F21") = ActiveSheet.Range("S31")
ActiveSheet.Range("F16") = ActiveSheet.Range("S32")
ActiveSheet.Range("F15") = ActiveSheet.Range("S33")
'pipe sizing for circular section given relative roughness diameter unknown

ElseIf ActiveSheet.Range("M17").Value = 2 And (ActiveSheet.Range("M6").Value = 1 Or ActiveSheet.Range("M6").Value = 2 Or ActiveSheet.Range("M6").Value = 3) And ActiveSheet.Range("M9").Value $=$ True And ActiveSheet.Range("M11").Value $=$ True And ActiveSheet.Range("M15").Value = 1 Then

ActiveSheet.Range("F13") = ActiveSheet.Range("T17") End If

End Sub

REFERENCES

[1] R. W. Miller, Flow Measurement Engineering Handbook, 1985, (McGraw-Hill)
[2] Y. A. Cengel, R. H. Turner, and Cimbala, Fundamentals of Thermal Fluid Sciences, 3rd edn., McGraw-Hill, 2008
[3] Engineering Sciences Data Unit, Friction Losses for fully developed flow in straight pipes, ESDU 66027
[4] Engineering Sciences Data Unit, Friction Losses for fully developed flow in straight pipes of constant cross -section - subsonic compressible flow of gases, ESDU 74029
[5] C. L. Yaws., "Correlation constants for Chemical Compounds", Chemical Engineering, Aug. 16, 1976, pp. 79-87
[6] C. L. Yaws., "Correlation constants for Liquids", Chemical Engineering, Oct.25, 1976, pp.127-135
[7] C. L. Yaws, "Correlation constants for Chemical Compounds", Chemical Engineering, Nov. 22, 1976, pp.153-162
[8] C. L. Yaws., "Physical Properties", 1977, (McGraw Hill)
[9] AlignaGraphics Co., UK, "Pipeline Sizing Program", Pipedi User Manual, 1998
[10] J. B. Evett, 2500 Solved Problems in Fluid Mechanics E Hydraulics 1989, (McGraw-Hill)
[11] A. Esposito, Fluid Power with Applications, 1980, (Prentice Hall)
[12] R. N. Fox, Introduction to Fluid Mechanics, 1992, (Wiley)
[13] L. F. Moody, "Friction Factors for Pipe Flow ", Trans. ASME, Vol. 66, No. 8, pp. 671, 1944
[14] P. K. Swamee, A. K. Jain, "Explicit Equations for Pipe Flow Problems" Journal of Hydraulic Division, Proc. ASCE, pp. 657-664., May, 1976
[15] W. L. McCabe, J. C. Smith, and P. Harmott, Unit Operations in Chemical Engineering, 4th edn, pp. 91-92, 1985, (McGraw-Hill)
[16] R. H. Perry, and D. W. Green, (eds), Perry's Chemical Engineers' Handbook, 6th edn, 1984, (McGraw Hill)
[17] V. L. Streeter, Fluid Mechanics, 1983, (McGraw-Hill)

BIOGRAPHICAL NOTES

T. K. Jack is a Registered Engineer, and ASME member. He worked on rotating equipment in the Chemical Fertilizer industry, and on gas turbines in the oil and gas industry. He has Bachelors degree in Mechanical Engineering from the University of Nigeria, and Masters Degrees in Engineering Management from the University of Port Harcourt, and in Rotating Machines Design from the Cranfield University in England. He was the Managing Engineer of a UK Engineering Software Company, ALIGNagraphics and the developer of a Pipeline sizing program, "PipeDi". He is a University Teacher in Port Harcourt, Rivers State, Nigeria, teaching undergraduate classes in mechanical engineering. He can be reached by Email: - tonyekjack@yahoo.com

